This is a general study guide overview for the PAM 103 Exam #1. All information provided in the text, lecture, lab, and Blackboard resources can be used as exam questions.

Exam makeup:

- Part 1 70 Multiple Choice Questions
- Part 2 of the exam will be rhythm recognition (20 Rhythms) of the single lead rhythms that have been covering in the past few classes. You may be asked to identify the following:
 - o P wave morphology
 - o PR interval
 - o QRS segment
 - o ST segment
 - o QT segment
 - o Rhythm interpretation

Page(s) Reference	Topic
p 910	Describe risk factors related to cardiovascular disease
pp 910– 912	Understand the basic structure and function of the cardiovascular system
pp 934– 935	Identify the major normal and abnormal heart sounds
p 912	Describe the cardiac cycle, including diastole and systole
p 914	Identify the various types of blood vessels
	Explain how the heart functions as a pump, including the concepts of
pp 915, 917– 918	cardiac output, stroke volume, heart rate, and ejection fraction
	Understand how electrical conduction activity occurs within the heart (i.e.
pp 918– 921	Heart block signal impulse, pacemakers)
p 915	positive/negative chronotropic effect & positive/negative inotropic effect
	Understand how the autonomic nervous system controls the functioning of
pp 921– 923	the heart, acetylcholine & cholinesterase
	Identify the various classes of drugs that influence the sympathetic nervous
pp 923– 927	system.
pp 924– 925	Alpha & Beta medication interaction, sympathetic properties
pp 927– 928	Understand how the sympathetic nervous system regulates blood pressure
	Explain patient assessment procedures for cardiovascular problems,
	including scene size- up, primary assessment, history taking, secondary
pp 928– 936	assessment, and reassessment
	Recognize the medications commonly prescribed to patients with
	cardiovascular diseases (i.e. Beta blockers, calcium channel, etc.), know the
pp 930– 933	implications of jugular venous distention
pp 937– 938	Describe the placement of leads and electrodes in 3- lead ECG monitoring
pp 942– 944	Identify the components of an ECG rhythm strip
pp 945– 947	Understand how to determine heart rate
pp 939, 941	Describe the placement of 12- lead ECG leads

Study Guide for PAM 103 Exam #1

pp 940– 941	Describe the placement of 15- and 18- lead ECG leads
p942	P wave, PR interval, QRS, ST segment, T wave, Q wave, & J point significance
p 943	Absolute/relative refractory period of the ventricles
p 952	Definition of paroxysmal
	Recognize normal sinus rhythm, and list the various types of cardiac
pp 947– 964	dysrhythmias
p 915	Ejection fraction (EF): The percentage of blood that leaves the heart on
	each contraction
	i. Measurement taken from left ventricle
	ii. Normal range of 55% to 70%, lower if heart is damaged
	Aberrant Conduction - We have talked about this numerous time is class
p 972	and lab regarding how this conduction is abnormal